Pinning down the superfluid and measuring masses using pulsar glitches
نویسندگان
چکیده
Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.
منابع مشابه
Pinning Down the Superfluid and Nuclear Equation of State and Measuring Neutron Star Mass Using Pulsar Glitches
Pulsars are rotating neutron stars that are renowned for their timing precision, although glitches can interrupt the regular timing behavior when these stars are young. Glitches are thought to be caused by interactions between normal and superfluid matter in the star. We update our recent work on a new technique using pulsar glitch data to constrain superfluid and nuclear equation of state mode...
متن کاملEffect of entrainment on stress and pulsar glitches in stratified neutron star crust
The build up of the stress whose relaxation is presumed to account for pulsar frequency glitches can be attributed to various mechanisms, of which the most efficient involve differential rotation of the neutron superfluid in the inner layers of the (magnetically braked) solid crust of a rotating neutron star. In such a case it is usually supposed that the stress is attributable to pinning of su...
متن کاملEffect of entrainment on stress and pulsar glitches in neutron star crust
The build up of the stress whose relaxation is presumed to account for pulsar frequency glitches can be attributed to various mechanisms, of which the most efficient involve differential rotation of the neutron superfluid in the inner layers of the (magnetically braked) solid crust of a rotating neutron star. In such a case it is usually supposed that the stress is attributable to pinning of su...
متن کاملA cellular automaton model of pulsar glitches
A cellular automaton model of pulsar glitches is described, based on the superfluid vortex unpinning paradigm. Recent analyses of pulsar glitch data suggest that glitches result from scale-invariant avalanches (Melatos et al. 2007), which are consistent with a self-organized critical system (SOCS). A cellular automaton provides a computationally efficient means of modelling the collective behav...
متن کاملPinning and Binding Energies for Vortices in Neutron Stars: Comments on Recent Results
We investigate when the energy that pins a superfluid vortex to the lattice of nuclei in the inner crust of neutron stars can be approximated by the energy that binds the vortex to a single nucleus. Indeed, although the pinning energy is the quantity relevant to the theory of pulsar glitches, so far full quantum calculations have been possible only for the binding energy. Physically, the presen...
متن کامل